弹道冲击下超弹性材料/铝合金复合靶板自愈合行为研究

Self-healing Behavior of Hyperelastic/Aluminum Alloy Composite Targets under Ballistic Impact

  • 摘要: 本研究基于LS-DYNA数值模拟和弹道冲击试验,探究了超弹性材料/铝合金复合靶板在12.7 mm弹丸侵彻下的抗侵彻与自愈合性能,为超弹性材料在工程防护中的应用提供参考。结果表明:超弹性涂层的涂覆方式会显著影响复合靶板的性能,迎弹面涂覆工况中,橡胶、聚氨酯和聚脲均能实现100%孔径收缩率,而背弹面涂覆时铝合金板花瓣形破坏导致聚脲涂层被撕裂,收缩率骤降至17.2%,迎弹面涂层自愈合性能优势显著。背弹面涂层通过动态载荷作用下充分拉伸变形,增强了动能耗散能力,抗侵彻性能优于迎弹面,但需足够铝合金板厚度支撑吸能,且背弹面涂层的自愈合性能受涂层厚度影响,增厚涂层厚度可显著提高橡胶与聚脲材料的自愈合性能。增厚铝合金板可协同提升抗侵彻与自愈合效能,而迎弹面涂覆时增厚铝合金板会因铝合金板刚度过大加剧涂层损伤,降低自愈合性能。

     

    Abstract: This study investigates the anti-penetration and self-healing performance of hyperelastic material/aluminum alloy composite targets under 12.7 mm projectile impact through LS-DYNA numerical simulations and ballistic tests, providing engineering references for protective applications. Results demonstrate that coating configurations significantly affect target performance: Front-side coatings (rubber, polyurethane, and polyurea) achieved 100% aperture contraction ratio, whereas back-side polyurea coating suffered tearing from aluminum substrate's petal-shaped fracture, reducing closure ratio to 17.2%, confirming front-side coatings' superior self-healing capability. Back-side coatings exhibit enhanced kinetic energy dissipation through dynamic tensile deformation, showing better penetration resistance than front-side counterparts, but require sufficient aluminum thickness for energy absorption. The self-healing performance of back-side coatings is thickness-dependent, with increased thickness significantly improving rubber and polyurea's recovery. Thickening aluminum substrate synergistically enhances both penetration resistance and self-healing efficacy, while front-side aluminum thickening aggravates coating damage through stress concentration, impairing self-healing performance.

     

/

返回文章
返回