格构腹板增强泡沫夹芯复合材料准静态压缩吸能特性

Energy absorption behavior of foam-filled sandwich composite materials reinforced by lattice webs under quasi-static compression

  • 摘要: 复合材料夹芯结构具有较高的比强度和比刚度、优异的耐腐蚀性能、良好的抗疲劳性能、简单的成型工艺等特点。以聚氨酯(Polyurethane,PU)泡沫作为芯材,玻璃纤维增强树脂复合材料(Glass fiber reinforced polymer,GFRP)作为面层和腹板,制备了空间格构腹板增强泡沫夹芯复合材料试件。保持试件的几何尺寸不变,改变竖直格构腹板的空间位置,将竖直格构腹板优化设计为双层正交格构腹板、双层错位格构腹板和三层错位格构腹板。对试件开展准静态压缩试验,对比研究其破坏形式与吸能特性。发现三层错位格构腹板试件具有较理想的荷载-位移曲线。改变格构腹板的空间位置后,试件的弹性行程延长,同时,试件的承载能力也有所提升。与竖直格构腹板相比,三层错位格构腹板试件的能量吸收值提升91.9%。运用等效十字模型计算了双层正交格构腹板试件的面内等效弹性压缩刚度,可知双层正交格构腹板试件的弹性刚度受格构压缩模量影响较大。利用ANSYS/LS-DYNA对试件进行数值模拟,对比试验研究得到的材料特性和破坏模式,验证了数值模拟的准确性,进而运用数值模拟对各试件的GFRP腹板和泡沫芯材吸收能量的情况进行对比和分析。

     

    Abstract: Composite sandwich structure has higher specific strength, specific stiffness, excellent corrosion resistance, good fatigue resistance and simple molding process, etc. Composite sandwich specimens were produced with face sheets and lattice webs which were made from glass fiber reinforced polymer (GFRP) and core made from polyurethane (PU) foam. The vertical lattice webs were transformed into double-layered orthogonal lattice webs, double-layered dislocation lattice webs and triple-layered dislocation lattice webs. Quasi-static compression experiment was performed on specimens to compare their failure modes and performance of energy absorption. The results show that the triple-layered dislocation lattice webs have ideal load-displacement curves. After changing the spatial position of the lattice webs, the elastic decline is extended, and the bearing capacity of the specimen is improved. Compared with the vertical lattice webs, the energy absorption value of the triple-layered dislocation lattice webs increases by 91.9%. The equivalent cross model was assumed to calculate the equivalent elastic compression stiffness of the double-layered orthogonal lattice webs, and the elastic stiffness of the double-layered orthogonal lattice webs is greatly affected by the lattice compression modulus. Numerical simulations using ANSYS/LS-DYNA were conducted on composite panels. By comparing the material properties and failure modes obtained from the experimental investigations, the accuracy of the numerical simulation could be well predicted, and the energy absorption of the GFRP webs and foam was compared and analyzed by numerical simulation.

     

/

返回文章
返回